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Abstract

Quantum programming languages traditionally focus on the hardware level and are
therefore not really good at representing the intentions of the programmer. Explicit for-
mulation of uncomputation, which is essential for the safe and efficient use of the qubits,
makes the code unnecessarily complex. In recent work, Vechev et al. (2020) introduced
Silq, a high-level language that allows for safe, automatic uncomputation just using its type
system. This feature makes the code significantly shorter and more intuitive. The type
system can also ensure that any program that compiles is physical.

In this project, we compared Silq’s solution of handling uncomputation with other ap-
proaches and give an overview of the features of quantum languages. We have also tried to
understand whether a qubit can be safely discarded by directly looking at the entanglement.

1 Introduction

The development of more powerful quantum computers enables longer and more complicated
quantum algorithms to be created. Quantum programs are usually presented as pseudo code
or in a real quantum programming language. Unfortunately, the latter are still unnecessarily
focused on the hardware and cannot present the programmer’s idea clearly.
The solution to this problem lies in the development of high-level quantum programming lan-
guages which, despite their abstraction, can ensure that they produce physical programs. This
means, for example, that they do not violate the no-cloning theorem and do not allow implicit
measurements.
We will now motivate the use of high-level features on the example of uncomputation. Assume we
have three qubits a, b and c and we want to compute the combined AND, namely a AND b AND c
and store the result in a qubit d that is initially set to zero. We can do so by storing the
intermediate result of a AND b in an ancilla t1 and then compute t AND c to get the desired
result. This computation is analogue to the classical computation of x AND y AND z and the
circuit is displayed in figure 1. However, in the quantum case we cannot simply forget the ancilla
qubit t as we could in the classical case by deleting it. Simply taking it from consideration induces
an implicit measurement, because we can deduce from the deferred measurement principle, that
measuring the qubit directly would give the same probability distributions as measuring it in
the end. As we could measure all non-ancilla qubits before the ancilla, measuring the ancilla
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1The corresponding quantum gate is called Toffoli gate or controlled-controlled-not gate (CCNOT).
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directly must be equivalent to not measuring it. As measuring the ancilla induces an implicit
measurement on the other qubits, forgetting the ancilla is not a valid option. So instead we have
to uncompute the ancilla, meaning that we reset it to zero with another unitary transformation.
In this example, we simply apply another CCNOT gate with a and b as control and t as target
to reset t to the zero state. The act of resetting the ancilla qubit to the zero state is called
uncomputation.
Until recently, uncomputation had to be explicitly programmed. This changed when Vechev et
al. (2020) introduced Silq, a high-level language that allows for safe, automatic uncomputation
just using its type system. This feature makes the code significantly shorter and more intuitive.
However, as with any type system, there are limitations to Silq in terms of what can be rep-
resented. In this work we also discuss this deviations and evaluate other methods for telling
whether or not a qubit can be safely discarded that work directly with the entanglement.
The structure of the current work is the following: First we discuss the features of classical and
quantum languages. Then we focus on the question, when a qubit can be safely discarded in
the sections uncomputation and entanglement. We see how uncomputation and other quantum
features are represented in quantum languages in the case studies section. We end the report
with a discussion on the different approaches we have seen for handling uncomputation and ask
the question, whether or not our question of discarding qubits safely is even computable.
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b
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|0〉 = t
|0〉 = d

a

b
c

a AND b
a AND b AND c

(a) The intermediate result a AND b
is stored in an ancilla qubit t.

a

b
c

|0〉 = t
|0〉 = d

a

b
c

|0〉
a AND b AND c

(b) The ancilla qubit t is uncomputed af-
ter the result is duplicated to the results
qubit d.

Figure 1: Example for uncomputation; Circuit for computing a AND b AND c of three qubits
a, b and c [1].

2 Background

In this section we start with the classical features of programming languages and then discuss
the additional features of quantum programming languages.

2.1 Classical features

Every programming language has certain types (i.e. int, float, string), expressions (i.e. if e then
e1 else e2), annotations (i.e. const) and rules for typing judgements (i.e. τ + τ = τ for a type
τ = int, float, string). A simple computational model for a classical programming language is
the random-access machine (RAM). It has an unbounded sequence of registers as memory and
a control unit that holds a program, which is a numbered list of statements. A program counter
determines in each step which statement should be executed next [2].
In the classical case, an if-statement has a condition, also called control, that is either true or
false. The condition cannot be something in between. There are no restrictions to the body of
an if-statement. We will later see, that the quantum generalisation is not that straightforward.
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Further we can have for-loops with a fixed number of iteration and while-loops where the number
of iterations is to be determined during runtime. More abstract concepts like classes or functions
can usually be decomposed into these elementary building blocks.

2.2 Quantum features

In the quantum case we have additional types that can be in superposition (i.e. represent qubits),
expressions (i.e. measure, reverse) and annotations (i.e. mfree2, qfree3).
We can extend our computational model of the RAM with quantum registers on which we can
perform unitary operations and measurements. We call this machine a quantum random-access
machine (qRAM) and say that a quantum program is physical if it runs on a qRAM without any
errors [3].
We can generalise the classical if-statement to the quantum conditional, whose condition or
control variable can be in a superposition [4]. For example, we can interpret the CNOT gate
acting on qubits a, b as the quantum conditional if a {X(b)} else {}. The control qubit can be
in the state Ψx = 1√

2
(|0〉+|1〉), so that the total wavefunction becomes Ψxy = 1√

2
(|00〉+|11〉) when

the b qubit is originally in state Ψy = |0〉. We will now see that there are many more possibilities
for quantum conditionals than just the CNOT gate. In practise, instead of conditioning on a, we
can also condition on Ua for a unitary U . As an example, we can condition on Xa to obtain an
if-not-statement. In theory, we can perform the quantum conditional in an arbitrary orthonormal
basis, as we can relate every two orthonormal bases with a unitary operator. For example, we
can switch between the σz-basis {|0〉 , |1〉} and the σx-basis{|+〉 , |−〉} with Hadamard gates. We
can also generalise the CNOT quantum conditional and control a unitary operation other than
Pauli-X.
Another difference between classical and quantum computation lies in the persistence of its
memory. While classical bits can be stored for almost any length of time, quantum bits suffer
from quantum noise. Meaning on real hardware, they decohere within a very short time [5].
Additionally, quantum gates typically introduce larger errors than classical gates. This limits
the number of gates that is available for computation and makes error correction necessary.
Measurement also takes a substantial amount of time, which we have to consider in mixed
programs that use partial measurement.
One surprising characteristic that we have to take into account is the deferred measurement
principle. According to this principle, delaying or advancing measurements does not change
the resulting probability distributions. For this reason, simply forgetting about qubits in our
computation is equivalent to doing a measurement directly after we used them the last time.
One property that severely limits our possibilities in quantum computing is that all operators,
except for measurements, are unitary. This means we have to write our functions in such a way
that they are reversible [5]. Just to give an example of what is not possible, imagine that we
have two qubits a and b and we want to store a AND b in b. The problem is that from the result
(a, a AND b) we cannot deduce the initial value of b if a starts in the zero state. This means
the computation is irreversible and thus cannot by implemented this way just using unitary
operations. What we can do instead is storing the result of a AND b in an ancilla r that is
initialised to zero [1]. We will continue our discussion on the features of quantum languages in
the case studies section. There we will see different type systems, helper functions and ways to
handle uncomputation.

2A function is mfree if it does not contain any measurement.
3A function is qfree if it does neither create nor destroy any quantum superposition.
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3 Uncomputation

Using additional memory makes many calculations easier. For example the computation of
x AND y AND z for three qubits x, y, z can be easily implemented with the circuit shown in
figure 1 by using an ancilla qubit a that stores the result of x AND y [1]. Unfortunately, the
number of qubits available to us is still very limited, both in real quantum hardware and in
simulations.
In classical computation this issue is resolved by simply deleting scratch memory and reusing it.
Doing so in quantum computation is a bad idea, because the ancilla qubits may be entangled
with the other qubits. Measuring the ancillas and resetting them to zero with a Pauli− X gate
if necessary may disturb the state of the rest of the system.
Can we at least just forget about ancilla qubits when we no longer need them for our calcula-
tions? That is not possible either. According to the deferred measurement principle, delaying or
advancing measurements does not change the resulting probability distributions [5]. This means
that forgetting about the ancilla qubit until the end of the quantum circuit does not help as it
is equivalent to directly measuring it.

3.1 Bennett’s construction

An elegant way to reset the ancilla qubits to |0〉 is the following construction introduced by
Bennett in 1973 [6, 7]. We start with some qubits in a general quantum state |x〉, ancilla qubits
initialized to |0〉 and some results qubits initialized to |0〉. After we do our calculation that is
represented by a unitary transformation C, we duplicate the qubits that represent the result
f(x). To reset the ancilla qubits to |0〉, we apply C−1.

|x〉
|0〉
|0〉

...

|0〉
|0〉

C C−1

|x〉
|0〉
|0〉
...

|0〉
|f(x)〉

Figure 2: Circuit for Bennett’s construction for uncomputing the ancilla variables [6, 7].

Here, duplicating the quantum state of a qubit is what we do when we use a CNOT gate with
the qubit as a control and act on another qubit initialised to |0〉 as target.

ψ ⊗ |0〉 = (a |0〉+ b |1〉)⊗ |0〉 7→ a |00〉+ b |11〉 (1)

On the other hand, cloning would be to map ψ to ψ ⊗ ψ for a general ψ. This is the kind of
copying that is forbidden4 by the no-cloning theorem.

ψ ⊗ |0〉 = (a |0〉+ b |1〉)⊗ |0〉 7→ ψ ⊗ ψ = a2 |00〉+ ab |01〉+ ab |10〉+ b2 |11〉 (2)

4The mapping that represents cloning must be unitary and thus be linear in particular. However, while the
left-hand side of equation (2) is linear in a, the right-hand side is quadratic in a. This is a contradiction, to our
assumption, that the mapping is linear. Note that for a, b equal to 0, 1 equation (2) reduces to equation (1) and
thus we can copy classical quantum states.
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In the interesting case in which C can be represented by a finite sequence of unitary gates, we
can construct the inverse transformation C−1 by applying the adjoints of the gates in reverse
order. We could naively think that this uncomputes the ancilla qubits, meaning it sets them to
|0〉 in general. Unfortunately, this is not true for a general unitary C as we see in the example
displayed in figure 3.

Figure 3: Circuit where Bennett’s construction does not work. The intermediate quantum states
are displayed in equation (3) to equation (8).

ψ0 = a |000〉+ b |100〉 (3)

ψ1 = a |000〉+ b |110〉 (4)

ψ2 =
a√
2

(|100〉+ |010〉) +
b√
2

(|100〉 − |110〉) (5)

ψ3 =
a√
2

(|100〉+ |011〉) +
b√
2

(|100〉 − |111〉) (6)

ψ4 =
a

2
(|000〉+ |010〉+ |001〉 − |011〉) +

b

2
(|100〉+ |110〉 − |101〉+ |111〉) (7)

ψ5 =
a

2
(|000〉+ |010〉+ |001〉 − |011〉) +

b

2
(|110〉+ |100〉 − |111〉+ |101〉) (8)

From equation (8), we see that the ancilla qubit is not reset to the |0〉 state, because the results
qubit destroys the interference. The terms colored in red would cancel if the third qubit was not
present.

3.2 Sufficient condition

Now we want to find a sufficient condition for Bennett’s construction to work. Because the circuit
is linear in the input state as a whole, we just have to understand what the circuit does to the
basis states. In the following discussion, we introduce the notion of a classical state or function.
We say that a state is classical if it is a computational basis state. We say that a function is
classical if it maps computational basis states to computational basis states. Assume that the
unitary transformation C in Bennett’s construction is classical, then for each basis state, the
result f(x) is classical. When we duplicate the result f(x) it remains classical, meaning it is
either |0〉 or |1〉 but not in superposition. When we now apply C−1, the results qubit will not
destroy the interference and the uncomputation works, meaning that the ancilla is reset to zero.
Because the transformation is linear, we have found the following sufficient condition for the
uncomputation to work.
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The unitary transformation C does map computational basis states to computational basis states.
We can easily construct an example to show that this condition is to strong. Consider a circuit
(C⊗1) (1⊗CNOT) (C−1⊗1) where the condition is fulfilled. We add another qubit to it and
apply two Hadamard gates, which gets us the circuit (C⊗1⊗H) (1⊗CNOT⊗1) (C−1⊗1⊗H).
This leaves the initial circuit unchanged. Clearly the uncomputation still works. However, when
we consider the new circuit with C̃ = C⊗ H, then C̃ does not fulfil our sufficient condition that
it maps computational basis states to computational basis states.
We note that it is only the results qubit which destroys our interference when it is not in a
classical state. In the last example, we do not duplicate the ancilla which we put in the |+〉 state
and the uncomputation still works. Therefore, we can get a weaker sufficient condition that just
makes sure that we only duplicate qubits in classical states for each computational basis state as
input of the circuit. This can be formulated as
The function f(x) in Bennett’s construction is classical.
Here, classical means that for every computational basis state x the function gives a value that
can be understood classically; without superposition and entanglement. This brings us to a
reformulation of the question, whether or not we can uncompute the ancilla qubits used in a
circuit C. The new question is, whether or not the interesting part of the computation can be
represented by a classical function f(x). In the case where the circuit is made from gates that
can be represented by classical functions, i.e. Pauli− X, CNOT, it is clear that also the full
circuit can be represented by a classical function. This is because classical functions are just
permutations of the basis states and the symmetric group, which represents these permutations,
is closed under composition. But, there can be transformation that look like they introduce
superposition, but actually they do not. For example the CNOT gate is just a permutation of
the computational basis. But when we do the trick of switching control and target, we can find
a representation of it that includes Hadamard gates. When we look at the representation in
figure 4 it not apparent, that it would satisfy our condition.
In this chapter we started with the question, when it is possible to uncompute an ancilla qubit. Af-
ter careful consideration of Bennett’s construction we found that we can substitute this question
with an approximate substitute question. Namely, is the function f(x) in Bennett’s construction
classical. One can think of clever rules to solve this decision problem. While the new formu-
lation makes it easier to think about our original question, it is still true that we cannot make
positive statements. As we have seen in figure 4, there are cases when non-classical gates lead to
a circuit that can be represented classically. In the following chapter, we will work directly with
the entanglement and see something similar.

=
H

H

H

H

Figure 4: Representation of the CNOT gate.
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4 Entanglement

The hope for an exponential speedup of quantum computers compared to classical computers has
been present since Feynman’s ingenious observation; computing the time evolution of quantum
systems on a classical computer requires exponentially more resources than the physical imple-
mentation [8]. Entanglement is one of the key features that separates quantum computers from
classical ones. For a quantum algorithm operating on pure states, Jozsa and Linden showed that
multi-partite entanglement is a necessary condition to allow for an exponential speedup of the
quantum algorithm over a classical one [9]. Therefore we can view entanglement as a resource
for computation. Recently, entanglement measures have sparked new interest in the research
working with parameterized quantum circuits. When using such circuits in variational hybrid
quantum-classical algorithms, one is often concerned that the circuit represents the solution space
well. To compare circuits, Sim et al. (2019) proposed the use of the Meyer-Wallach entanglement
measure to quantify the entanglement capability of the quantum circuits [10]. In our case, we
are mainly interested in entanglement, because we hope to predict, whether or not some qubits
may be safely discarded.
In this chapter we will start with the definition of bipartite entanglement and explain how a bi-
partite system can be tested for entanglement using SVD. Then we motivate discuss multipartite
entanglement on the example of the W and GHZ state, giving the reader an idea of how com-
plicated the problem becomes. After discussing an ansatz for keeping track of the entanglement,
we refer to methods for quantifying multipartite entanglement that were proposed just recently.
To end the chapter, we will discuss the question whether or not entanglement is predictable at
all.

4.1 Bipartite entanglement

We consider two quantum systems A and B with Hilbert spaces HA and HB, respectively. Using
the bases {|i〉A}i and {|j〉B}j, we can write any vector in the Hilbert space HA ⊗ HB of the
composite system AB as |Ψ〉AB =

∑
i,j cij |i〉A |j〉B. We define a state |Ψ〉AB to be separable

iff there exists states |Ψ〉A =
∑

i c
A
i |i〉A and |Ψ〉B =

∑
j c

B
j |j〉B so that |Ψ〉AB = |Ψ〉A ⊗ |Ψ〉B.

Otherwise, we say that the state |Ψ〉AB the is entangled on the bipartite system AB.
Separability is equivalent to the existence of a matrix c with cij = cAi c

B
j [11].

A useful feature of the bipartite case is that we can check for entanglement using the Schmidt de-
composition, which is a reformulation of the singular value decomposition (SVD) in the context of
quantum mechanics. The corresponding theorem says that for every pure state |Ψ〉AB, there exists
orthonormal bases {|i〉A}i and {|j〉B}j so that |Ψ〉AB can be written as |Ψ〉AB =

∑
i λi |i〉A |i〉B.

The Schmidt co-efficients λi are non-negative numbers that satisfy
∑

i λ
2
i = 1. We define the

Schmidt number to be the number of non-zero Schmidt co-efficients. If the Schmidt number is
one, the Schmidt decomposition has the form of a product state and the state is separable. For
a Schmidt number bigger than one, the state is entangled [5].
Next we discuss an ansatz for telling whether or not an unitary U acting on HA ⊗ HB may
entangle a product state. For this discussion, we recommend the reader to have the CNOT
gate in mind, in which case HA and HB are just single qubit Hilbert spaces. We interpret U
as four legged tensor Ukl

ij where i,j are the indices of the input space and k,l the indices of the
output space, standing for HA, HB, respectively. For example, we can write the CNOT gate
as CNOT = |00〉A′B′ 〈00|AB + |01〉A′B′ 〈01|AB + |11〉A′B′ 〈10|AB + |10〉A′B′ 〈11|AB and interpret the
indices of each term as |kl〉A′B′ 〈ij|AB. To make it even more explicit, we differentiate between the
input systems AB and the output systems A’B’. We see that the input indices appear together
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and the output indices appear together, meaning that U is split between input and output.

U → U

k

l

i

j

→ U

k

l

i

j

Ũ

(a) Graphical representation of the new interpretation of U as Ũ [12].

The idea of our ansatz is now to split U between the A and the B system, which results in
Uki
lj . The upper and lower indices now represent functions on A and B, respectively. With the

CNOT gate, we use the basis elements {ΩC
k }k = {|0〉C′ 〈0|C , |0〉C′ 〈1|C , |1〉C′ 〈0|C , |1〉C′ 〈1|C}

for C ∈ {A,B} and write the gate as in equation (9).

CNOT = |0〉A′ 〈0|A (|0〉B′ 〈0|B + |1〉B′ 〈1|B) + |1〉A′ 〈1|A (|0〉B′ 〈1|B + |1〉B′ 〈0|B) (9)

CNOT = ΩA
0 (ΩB

0 + ΩB
3 ) + ΩA

3 (ΩB
2 + ΩB

3 ) (10)

Now we can contract the indices of the CNOT gate in equation (10) an interpret it as a two
legged tensor. One leg represents {ΩA

k }k and the other {ΩB
k }k. We can now apply a SVD and see

if it is possible to make the split between the two indices. In the case of the CNOT gate, we get
two non-zero singular values and therefore it is not possible to write the gate as a cross product
of two single qubit gates. This means that the CNOT gate may entangle the two qubits [13].

ψ ψ′U

(a) A general unitary U acting
on a bipartite system.

U = S

V

W

(b) Singular value decomposition of U.

Figure 6: Two representations of the same unitary U as a four legged tensor. The input ψ
appears on the left since circuit diagrams are read from left to right. The horizontal lines are
associated with quantum systems, and can be interpreted as tensor legs. With the CNOT gate,
a leg represents a single qubit [12].

Now we have seen an ansatz, for telling whether a unitary U acting on a bipartite system
may entangle the two systems if we start from a product state. For a formal discussion of the
entangling power of a two-qubit gate we refer the reader to the work of Guan et al. (2014) and
Shen and Chen (2018) [14, 15].
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4.2 Multipartite entanglement

We will now discuss multipartite entanglement on the example of the three qubit W and GHZ
state. Dür et al. showed in 2008 that three qubits can be entangled in two inequivalent ways [16].
As it is sufficient for our purpose, we restrict ourselves to a giving the reader an idea, not having
in mind to summarise or represent their work. In the bipartite case, we could think of the amount
of entanglement between systems A and B as the amount of information we gain about system B
if we measure system A. For example the quantum state |ψ〉AB = |0〉+|1〉√

2
⊗ |0〉+|1〉√

2
is not entangled,

because measuring A will give |ψ〉B = |0〉+|1〉√
2

and thereby not reveal anything about B. On the

other hand |GHZ〉AB = |00〉+|11〉√
2

will collapse the wavefunction of B to |ψ〉B = |0〉 or |ψ〉B = |1〉
depending on the result of measuring A. The number of possible outcomes of measuring B has
gone from 2 to 1 and therefore we have gained information about B from measuring A. The two
qubits were entangled.
Now let us consider a tripartite system ABC consisting of single qubit systems A, B and C. There
are two maximally entangled states, namely the W state |W〉 = 1√

3
(|001〉+ |010〉+ |100〉) named

after Wolfgang Dür and the GHZ state |GHZ〉 = |000〉+|111〉√
2

named after Daniel Greenberger,
Michael Horne and Anton Zeilinger. We will now argue that these states are not entangled in the
same way. As in the bipartite case, we consider what happens when we measure the A qubit. In
the case of the GHZ state, measuring the subsystem A also tells us in which state the subsystems
B and C are, as the wavefunction is reduced to either |ψ〉BC = |00〉 or |ψ〉BC = |11〉 for the
result 0 or 1, respectively. The number of possible outcomes for measuring the system BC has
been reduced from two to one, independent of the outcome of the measurement of A. On the
other hand, when we measure the subsystem A of the W state, we either get |ψ〉BC = |00〉 if the

outcome is 1 or |ψ〉BC = |01〉+|10〉√
2

if the outcome is 0. That means in the case of the GHZ state,
it is sufficient to measure one qubit to determine the state of all three subsystems, while in the
case of the W state we need to measure two qubits, to know the state of the third one.
For completeness we finish this discussion with the main result of Dür et al. (2008). They used
invertible local transformations of a multipartite system to define equivalence classes in the set
of entangled states. The equivalence relation says that two states are related, iff they have the
same kind of entanglement. That means iff both states can be obtained from each other by
means of local operations and classical communication (LOCC) with non-zero probability. With
this definition, they show for the case of a three qubit system, that there are two inequivalent
kinds of genuine tripartite entanglement. The GHZ state and the W state are representatives of
these. Moreover, they noticed that the loss of a particle, which can be modeled by tracing out
one qubit, has a different effect on the entanglement of the remaining system. If one of the qubits
of the GHz state is traced out, the remaining two qubit system is completely unentangled. On
the other hand, the W state is special among the three qubit states, because it loses the least of
its entanglement element with the loss of a particle [16].
We end our general discussion of multipartite entanglement by referring the reader to the work
of Eisert and Briegel (2008) who introduced a way to quantify multipartite entanglement. Their
entanglement monotone is called the Schmidt measure and as the name suggests, it is a general-
ization of the Schmidt rank earlier introduced in this chapter [17].
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4.3 Predicting entanglement

In the following we first consider a rudimentary way to predict if certain subsystems are not
entangled. Then we carry out an argument of Prost and Zerrari (2009) according to which the
question of entanglement cannot be decided in general.
We will try to define an equivalence relation ∼ on the set of qubits A with a ∼ b ⇔ a is
entangled with b, where a, b ∈ A. Before we discuss why this fails, we mention what we tried
to achieve with this relation. Any equivalence relation on a set corresponds to a partition of
the set. In our case, we group the set of qubits into subsets of entangled qubits. Assuming an
initial partition and considering a quantum program, we can keep track of operations which may
introduce entanglement between the partitions. Even though we cannot predict at certain, if two
qubits are entangled in the end, we can still predict some cases when they are certainly not. This
is useful information for the programmer.
So let us check, if ∼ fulfils the three requirements of an equivalence relation. Clearly ∼ is reflexive,
as measuring a will yield information about a. It is also symmetric, as the Schmidt number is
independent of the ordering of the two systems. Last, we have to check that ∼ is transitive. If
we make the connection to the classical case, that is to say classical correlation, then we already
see that we might run into problems. For classical variables X, Y and Z, we can have the case
that X and Y are correlated, as well as Y and Z. For example, we can imagine the case where Z
is a function of X and Y, i.e. z = x + y. If we sample these three variables, then X and Y are
not correlated, unless we impose a constraint on Z. So the classical correlation relation is not an
equivalence relation, as it is not transitive.
In the quantum case, the entanglement of a bipartite system AB that is part of a larger system
ABC is more complicated, as there are two options for measuring the entanglement. First, a
necessary and sufficient condition to test the entanglement of the systems A, B for a pure state
ΨABC is to check if TrC(|ΨABC〉 〈ΨABC|) is not positive under the partial transpose map [18, 19].
To show that in this case the entanglement relation is not transitive, one can apply the criterion
on three qubit state |Ψ〉ABC = 1√

2
(|000〉 + |11φ〉) and get a counter-example. Alternatively, we

could measure the system C and deal with the different cases separately. For example, the GHZ
state |GHZ〉 = |000〉+|111〉√

2
collapses to an unentangled product state if we measure one of the

qubits in the computational basis. Furthermore, we can consider the Coffman-Kundu-Wootters
(CKW) monogamy inequality given in equation (11) which relates the concurrence of a tripartite
system. The concurrence CAB is an entanglement monotone, meaning that it measures the degree
of entanglement between the subsystem A and B [20].

C2
AB + C2

AC ≤ C2
A(BC) (11)

The take-away message here is the following. Because there is a trade-off between A’s entangle-
ment with B and its entanglement with C, the ansatz with the entanglement relation is somehow
problematic, as it cannot capture this important constraint. There might be more suitable re-
lations, which in the best case, are even transitive. Because the entanglement relation is not
transitive, we cannot use it to make positive statements on the entanglement of qubits. What
we can do is to classify the gates and operations regarding whether or not they may entangle
qubits, Then we can construct partitions of qubits that may be entangled after applying a quan-
tum program by simply using one of the algorithms that was invented for finding partitions of a
graph. If two qubits end up in different partitions, they are certainly not entangled. However,
the opposite is not true.
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4.4 Feasibility

To continue our discussion about the feasibility of predicting entanglement, we will develop an
argument by Prost and Zerrari (2009) in more detail [21]. They noticed that separability is not
computable, meaning that it is not possible to find a program which predicts for every quantum
algorithm whether or not it entangles two systems. The idea of their argument is that such
program could be used to decide the halting problem. This is the problem of determining, for an
arbitrary computer program and an input, whether the program will finish running, or continue
to run forever. However, Alain Turing (1936) has proven that such a program cannot exist [22].
We start our proof by contradiction by assuming that we have a program hq(j, a) which tells us
for each quantum program i whether or not it will terminate for input a. We define it as given
in section 4.4.

hq(j, a) =

{
1 if quantum program i produces entanglement in a,

0 otherwise.

We now construct a classical analogue h(i, x) from hq(j, a) which solves the halting problem.
Let’s take an arbitrary program i with an input x. We concatenate the input x with to qubits q1
and q2 to an input a = (x, q1, q2). We add a last line to program j that entangles the qubits q1
and q2 and define the resulting problem i. Now the program h(i, x) := hq(j(i), a(x, q1, q2) decides
the halting problem. This is a contradiction, which is why hq(j, a) cannot exist.
To finish this chapter, we make the link to uncomputation. Our motivation to predict the
entanglement of a quantum system after applying a program was that we wanted to tell if we
can safely forget about certain qubits. In this chapter, we now saw that making the prediction
based on considerations on the entanglement may be very complicated, when not impossible. An
easier and more elegant way for this will be discussed in the next chapter.

5 Case studies

In the following section we are going to discuss how different quantum programming languages
handle uncomputation. Along the way we present features that are specific to quantum pro-
gramming languages. We will discuss the languages Silq [23], Q# [24], Quipper [25] and QWIRE

[26]. One of the first quantum languages, QCL [27], also happens to be a good example for a
transparent allocation and uncomputation of ancillas and we leave it here as a reference.

5.1 Silq

In short, Silq5 can achieve the following with its type system. All programmes that compile are
physical. Ancilla variables are automatically and safely uncomputed. This leads to shorter and
more readable code. Silq comes with a proof-of-concept simulator and a development environment
in VS Code [23].
The type system of Silq is well described in the original paper and we present here only the
options for expressions (e), types (τ), annotations (α, β) and typing judgements (Γ) in figure 7,
figure 8 and figure 9, respectively [23].

5https://silq.ethz.ch/
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e ::= c | x | measure | reverse | if e then e1 else e2 | e′(e1, ..., en) | λ(β1x1 : τn, ..., βnxn : τn).e
(12)

Figure 7: Silq-core expressions, namely constants and built-in functions, variables, measurement,
reverse functions, conditionals and lambda abstraction.

τ ::= 1 | B |
n×
k=1

τk |
k×
k=1

βkτk!
α→ τ ′ | !τ (13)

Figure 8: Silq-core types, namely numbers, booleans, combinations of types, functions and their
classical counterparts which are marked with an exclamation mark (!) [23].

α ⊆ {mfree,qfree} (14)

β ⊆ {const} (15) Γ ::= β1x1 : τ1, ..., βnxn : τn (16)

Γ α e : τ (17)

Figure 9: Silq-core annotations and typing judgements [23].

In the following we will focus on the connection between Silq’s annotations and the condition we
derived for uncomputation in section 3. Functions, whose semantics can be described classically,
are annotated as qfree. These are the functions that map basis states to basis states, such as the
X-gate. On the other hand, the Z-gate and Hadamard gate are not qfree. We annotate functions
as mfree if they do not contain measurements. Function arguments are annoted with const if
they are unchanged by the function and are still available after the function call. This is to say
that they are not consumed. Silq makes sure, that all variables are either const or that they are
consumed in the function. This is necessary to prevent the following actions: A) cloning, i.e.
using the same variable multiple times B) performing an implicit measurement, i.e. dropping a
variable from consideration and therefore directly measuring it. When a function is both qfree
and all arguments are const, then we call it lifted [23].
All ancilla qubits, which appear in lifted functions, can automatically be uncomputed. We can
understand this if we consider that such a function has a classical result for each classical input
of the const function arguments. This means that the conditions are fulfilled that we could use
Bennet’s construction to copy the result with CNOT. Fortunately, the condition is also sufficient
for allowing uncomputation if the inputs are not classical, but in superposition. We can consider
that qfree functions are linear isometries, that is, they are linear in particular. So if Bennett’s
construction works for each base state as a function argument individually, then it also works for
the superposition.
In the section on uncomputation, we saw that the question, whether or not uncomputing is
possible, boils down to telling whether or not the function f(x) is classical. The problem was
that telling this is non trivial, as we saw in the example with the representation of the CNOT
gates in figure 4. In the type system of Silq we find a similar problem. The compiler of Silq
tells whether or not a function is qfree based on the annotations of the functions which are
used inside the function. For this reason, Silq does not get the constructed example given in
figure 10. Unfortunately, this kind of construction where we first put the qubits into superposition
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with Hadamard gates, do something, and then apply Hadamard gates is pretty common. The
construction occurs, for example, in the Bernstein–Vazirani algorithm, displayed in figure 11 [28].

Figure 10: The type system of Silq is too restrictive in this case. While the reader knows, that
the function CNOT is qfree, Silq cannot deduce this property just using the type system.

|0〉
...

|0〉

H

H

Uf

H

H

...

Figure 11: Bernstein–Vazirani algorithm [28].

In the design of type systems there is always a trade off between making it more precise annd
making it easy to understand. To make it more precise, we can add rules and cover special cases,
so the user can reach the bounds of what is possible. To make it easier we can leave out rules let
the user create a workaround, for example by annotating the extra knowledge of the user or by
using a coerce statement.
A special characteristic of the annotation qfree is that it depends on the basis we choose for our
computations. For example the X operator6 in the basis {|0〉 , |1〉} does the same to the basis
vectors as the Z operator7 does to the basis vectors in the basis {|+〉 , |−〉}. But the X operator
in the {|0〉 , |1〉} is clearly classical, whereas the Z operator is not. The phase of π, eiπ = −1 in
front of Z |1〉 = − |1〉 cannot be described classically. This means X is qfree and Z is not. So we
can argue that the annotation qfree is basis dependent. This dependence originally motivated us
to look directly at the entanglement to find a basis independent view.
Last, we think about reversing functions in Silq. As all quantum operations except measurement
represent linear isometries, no two unequal inputs can be mapped to the same output, as otherwise
angles would not be preserved. This means the operations are injective and thus invertible on
their image. We can obtain the inverse of an mfree function f in Silq by typing reverse(f), but
we only obtain safe functions if f is also surjective and thus bijective. Otherwise, the programmer
has to ensure, that reverse(f) is only used on the image of f . This is another useful application of
the annotation mfree, which prevents the programmer from hiding measurements inside functions
and then trying to reverse them. As the typing judgement would get that the function is not
mfree, reverse would not accept it [23].

6X |0〉 = |1〉 , X |1〉 = |0〉 , X |+〉 = |+〉 , X |−〉 = − |−〉
7Z |0〉 = |0〉 , Z |1〉 = − |1〉 , Z |+〉 = |−〉 , Z |−〉 = |+〉
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5.2 Q#

While many quantum programming language such as Quipper and QWire are focused on defining
quantum circuits, Q#8 was designed for defining algorithms that consist of both quantum and
classical parts [24]. Q# comes with multiple simulators that model the quantum computing under
different assumptions. While the full state simulator actually stores the full quantum state and
thus can only simulate fewer than a dozen qubits, the trace simulator does not have to store the
state and thus works for a few thousand qubits. Quantum programs that only use X, CNOT and
multi-controlled X gates, can be simulated by the Toffoli simulator even with millions of qubits.
The trace simulator and the resources estimator can be used to estimate different metrics9.
We will quickly present the Q# types, which consists of the classical primitives, quantum primites,
collections, operations, functions and user-defined types. The classical data types a Int, Double,
Boolean and String. As quantum primitives there are Pauli, representing the identity and the
three Pauli operators, Result, representing the result of a measurement and Qubit. Collections
can be arrays and tuples and their elements can be of any Q# type. In Q# we make the
distinction between routines that can affect the quantum states and ones that cannot. While
operations can affect the quantum state, functions by definition do not change the quantum and
only perform classical computation [24].
In Q#, qubits and ancilla qubits are both allocated with the ”using”-statement. Ancilla qubits
have to be returned into state |0〉 before releasing them at the end of the using block. Just
ignoring the ancilla qubits may lead to unwanted behaviour, as they may still be entangled with
the other qubits. In contrast to Silq, Q# requires the programmer to do the uncomputation by
hand. While performing the uncomputation is usually not a difficult task, it still generates a lot
of unnecessary code, which obscures the big picture of the algorithm. A feature of Q# that is
also related to uncomputation is the ”borrowing”-statement. Assume we have a subroutine that
uses ancilla qubits temporarily and can ensure that those ancilla qubits are returned to the exact
same state at the end. If we have another subroutine that runs in parallel and does not perform
any actions on a part of the qubits, this qubits can be used as ”dirty ancillas” and borrowed by
the subroutine that needs them [24].

5.3 Quipper

Quipper is an embedded functional programming language that is geared towards a model of
computation where a classical computer controls a quantum device. It is a high-level language
and focused on scalability, meaning it can generate representation of quantum circuits that consist
of trillions of gates [25].
Many quantum languages are based on a quantum circuit model that only consists of unitary
gates and circuits. In Quipper, this circuit model a larger class of possible operations, which
we will discuss in the following. Among quantum bits, the type system also contains classical
bits, classical gates, classically controlled quantum gates and measurements. To represent the
scope of ancillas and qubits in general, Quipper offers explicit qubit initialization and qubit
termination. The compiler of Quipper explicitly keeps track of the scope of ancilla qubits. This

8The quantum language Q# is one tool of Microsoft’s Quantum Development Kit, which is avail-
able at https://docs.microsoft.com/de-de/azure/quantum/. A comprehensive documentation is available at
https://docs.microsoft.com/en-us/azure/quantum/user-guide/.

9This metrics include the run count of CNOT gates, Clifford gates, R gates, T gates and measure-
ments. The depth, width and borrowed width can also be estimated. A documentation is available at
https://docs.microsoft.com/en-us/azure/quantum/user-guide/machines/resources-estimator.
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helps the compiler to know which ancillas are currently free10 and to optimise which ancillas are
used. In the hardware agnostic quantum program it does not play a role, which free ancilla we
use in a subroutine. However, because there are platforms where gates can not be applied to
arbitrary pairs of qubits, the choice of which ancilla to use may be a valuable degree of freedom
for the compiler. Quipper also offers assertive termination, which is to assume that a certain
qubit ends in the |0〉 or the |1〉 state. This is in contrast to ordinary termination, where a qubit
is simply not considered anymore, possibly resulting in a mixed state. Note that the compiler
cannot verify the assertions automatically. It is the sole responsibility of the programmer to
only make correct assertions. The special feature of circuits that contain qubit initialization and
assertive termination is that they do not produce mixed states. In a suitable subspace the circuits
are unitary and thus reversible. This subspace is simply the subspace on which the assertions are
correct. The reversibility can be used in Quipper in the following form. Any circuit that contains
the same number of input and output qubits and an arbitrary number of local ancillas, can be
reversed by Quipper, even if it contains qubit initialization and assertive termination. This is
possible because the circuit is unitary [25].
The last feature of Quipper that we want to focus on is the automatic generation of quantum
oracles11. The definition of such an oracle can be performed in four steps and all except the
first one can be automated by Quipper. First, we express the oracle as a classical function on
classical data types. Second, we translate this function to a classical circuit. Third, we transform
the classical circuit to a quantum circuit. For this step we may need ancilla qubits to store
intermediate values, i.e. when we compute operations such as AND. Fourth and last, we make the
circuit reversible with the standard trick by replacing a function f(x) by (x,y) 7→ (x,y⊕f(x)) and
uncomputing any ancillas used by the function f. While step two and three are performed with
the Quipper operation build circuit, which is also referred to as circuit lifting. This operation
can be performed for classical functions made of millions of gates. The fourth step, namely the
uncompuation, can be automated in Quipper with the function classical to reversible. This
kind of helper function is characteristic for Quipper12. We see that uncomputation is performed
explicitly with a function call. This is in contrast to Silq, where the uncomputation is not only
automatic, but also implicit.

5.4 QWIRE

QWIRE13 is a language for small quantum circuits and is used embedded in a larger, functional
programming language. It has a purely linear type system to ensure type safety. In QWIRE,
circuits are explicitely separated from the arbitrary classical host language [26].
Here, we make the reader aware of the extension ReQWIRE. The main problem that ReQWIRE

solves concerns uncomputation and it is the following. In many languages, for example Quipper,
the programmer has to return the ancilla qubits to the |0〉 state before they are discarded and
assert, that this has been successful. However, this is an unsafe assumption and because the
programmer is not given any tools to check the assumption, it is a potential source of errors. In
their original paper, Rand et al. (2019) worked out methods for verifying that ancilla qubits are
discarded correctly and introduced ReQWIRE [26, 29].

10A free ancilla is one that is in the |0〉 state. By assumption we cannot distinguish different free ancillas.
11A quantum oracle is an unknown operation. We can think of it as a black box. Quantum oracles are often

used as an input of another quantum algorithm, for example in Grover’s algorithm, which also known as quantum
search algorithm. More information can be found at https://docs.microsoft.com/en-us/azure/quantum/concepts-
oracles.

12More examples can be found at https://hackage.haskell.org/package/quipper-core-0.8.0.1/docs/Quipper.html.
13Related papers and an implementation can be found at https://github.com/inQWIRE/QWIRE.
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6 Discussion

In this chapter we will compare the different approaches for performing uncomputation.

6.1 Explicit vs. implicit uncomputation

We start with the advantages and disadvantage of making uncomputation explicitly by hand like
in Q# or implicitly using automation like in Silq. The main advantages of the explicit formulation
are that the programmer is aware of the qubit usage and that extra knowledge can be build into
the uncomputation. For example, if an ancilla qubit ends in a computational basis state, and the
programmer knows, that it is not used again, then the uncomputation is unnecessary. It is not
entangled with the rest of the system and measuring it in the computational basis is safe. On
the other hand, letting the programmer do the uncomputation by hand or with helper functions
is a potential source of errors. Also, the explicit formulation does not add to the readability of
the code. Uncomputation corresponds to garbage collection in classical computation and in most
high-level classical languages we do make the deletion of variable explicit for this very reason.
In contrast, the implicit formulation of creating and dropping ancilla variables that Silq uses leads
to shorter and more readable code. In the case of Silq, the compiler can check that the program
is physical and that the ancilla variables are uncomputed correctly. This feature is very useful,
because the programmer is reminded when something is not possible at the time of writing the
code, making it possible to build an intuition for quantum programming. As we all agree, that
quantum mechanics is not intuitive at all, making a language intuitive like Python is definitely
something we should be aiming for.

6.2 Uncomputation vs. entanglement tracking

We already discussed explicit and implicit uncomputation and now we want to compare this
approaches with keeping track of the entanglement. Using implicit, automatic uncomputation
like Silq is certainly a beautiful approach but sometimes to restrictive. Refining the type system
to reach the boundaries may not be possible with a reasonable small set of typing rules. However,
one could overcome this imperfectness by letting the user annotate extra knowledge. On the other
hand, trying to predict the entanglement is hard, especially when we do not restrict the gate set
as it was done in the Toffoli simulator by Microsofts Quantum Development Kit. If we want to
provide the user with extra knowledge, then there is certainly information that is also useful but
easier to compute. In the case of entanglement, there might be even cases where the entanglement
is not predictable without simulating the circuit. In the end of our conclusion we discuss some
features that we would like to see in an integrated development environment (IDE) for quantum
languages.

7 Conclusion

The main contributions of this work are the following. First, we gave an overview of the features
of high-level quantum languages. Second, we provide a detailed discussion of uncomputation and
how it is handled in existing quantum languages. Third, we searched for other methods to tell if
we may forget a qubit. For this we looked at different ways to quantify entanglement.
We saw that the safest and most intuitive way to ensure that ancillas are correctly uncomputed,
is the approach of Silq using its type system. We believe that the rare cases, where the type
system is to restrictive, can be avoided or fixed by the programmer in useful time.
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It turned out, that predicting if an ancilla can be discarded safely by looking at the entanglement
seems to be harder. Simple approaches of bookkeeping cannot grasp the nature of the entan-
glement of the qubits. If one would like to further investigate this approach, we would suggest
to search for circuit manipulations that do not change the entanglement but make the circuit
easier to simulate. We think about the ZX-calculus here and the Toffoli simulator, which can
simulate large circuits which are restricted to X, CNOT and multi-controlled X gates. One could
also investigate the link between the quantum eraser proposed by Scully and Drühl (1982) and
uncomputation [30].
In the future we would like to see IDEs and compilers that provide the programmer with extra
information, similar to the autocompletion tool IntelliSense14 by Microsoft for classical program-
ming languages or Kite15 for the Spyder IDE. The Silq compiler already warns the user about
operations which would make the program nonphysical and when functions are annotated incor-
rectly. A programming assistant could further propose simplifications and inform the user about
useful statistics like qubit usage. Variables that are not used anymore could be colour-coded and
error correction on them could be omitted.
It remains unclear whether quantum programming will be intuitive at some point in the future.
However, quantum languages that are physical by definition and programming environments that
support the programmer are certainly important steps in this direction.
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