Startups

Invariant Labs
Invariant Labs makes AI agents secure, reliable and robust.

Publications

2025

Black-Box Adversarial Attacks on LLM-Based Code Completion
Slobodan Jenko*, Niels Mündler*, Jingxuan He, Mark Vero, Martin Vechev
ICML 2025 * Equal contribution
Mind the Gap: A Practical Attack on GGUF Quantization
Kazuki Egashira, Robin Staab, Mark Vero, Jingxuan He, Martin Vechev
ICML 2025 BuildingTrust@ICLR25 Oral
Finetuning-Activated Backdoors in LLMs
Thibaud Gloaguen, Mark Vero, Robin Staab, Martin Vechev
arXiv 2025
Large Language Models are Advanced Anonymizers
Robin Staab, Mark Vero, Mislav Balunović, Martin Vechev
ICLR 2025

2024

A Synthetic Dataset for Personal Attribute Inference
Hanna Yukhymenko, Robin Staab, Mark Vero, Martin Vechev
NeurIPS Datasets and Benchmarks 2024
Private Attribute Inference from Images with Vision-Language Models
Batuhan Tömekçe, Mark Vero, Robin Staab, Martin Vechev
NeurIPS 2024
Exploiting LLM Quantization
Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, Martin Vechev
NeurIPS 2024 NextGenAISafety@ICML24 Oral
Beyond Memorization: Violating Privacy Via Inference with Large Language Models
Robin Staab, Mark Vero, Mislav Balunović, Martin Vechev
ICLR 2024 Spotlight, 2024 PPPM-Award